fMRI quantification analysis and multiple regression

Associate Professor Jun-Cheng Weng, Ph.D. **Chang Gung University** 14 July 2020

Outline

- · Functional MRI review
- · fMRI data analysis
 - 1st-level individual analysis
 - 2nd-level group analysis
 - multiple regression
- · Resting-state fMRI quantification
- · Graph theoretical analysis
- Demo

Physiology during neural activation stimulated condition Kida and Hyder, Magnetic Resonance Imaging Methods and Biologic Applications 2006; chapter 7.

Energy during neural activation

- Neuronal firing: electrical activity
 - Excitatory and inhibitory
 - Neurotransmitter release and uptake
 - Action & graded potential
 - Ion flow
 - Hormone
- Biochemical reaction: metabolic activity
 - Active transport of ion pumps
 - Oxidative / non-oxidative glycolysis
- · Vascular response: hemodynamic activity
 - Energy demand, clean up waste
 - Blood flow, blood volume, blood oxygenation

Interpretation of fMRI signal

- fMRI signal is an index of ensemble of neural activity
 - presumably monotonic relation
- · Neural source of BOLD signal is not clear
 - spiking activities vs. synaptic activity
 - excitatory vs. inhibitory
- Difficult to compare fMRI signals across cortical regions and subjects
 - BOLD signal depend on vascular structure and volume

Other issues

- Normal physiology condition
 - Age
 - inferior vascular response for aged people (CBF decrease)
 - neonate: deoxyHb increase
 - Disease
 - transient global ischemia: vascular response abolished
 - carotid stenosis: vascular response diminish
 - Drug
 - alter vascular response, cardiopulmonary function,...
- Meaning of negative response
 - Negative response -> decreased activity?
 - Inhibitory activity also increase glucose uptake

6

Challenge of quantification

- · Electrical activity
 - Tiny perturbation in magnetic field: MRI phase
 - Ca²⁺ : manganese (Mn²⁺) enhanced MRI
 - Glutamate, GABA: H1-MRS
- · Metabolic activity
 - Lactate : H1-MRS
 - CMRO₂: combine CBF and BOLD
- Hemodynamic activity
 - Oxygenation: BOLD fMRI
 - CBF: Arterial Spin Labeling (ASL) MRI
 - CBV: contrast-injection / VASO

7

fMRI analysis tools

- SPM (Statistical Parametric Mapping)
 - Wellcome Trust Centre for Neuroimaging, UCL, UK
 - http://www.fil.ion.ucl.ac.uk/spm/software/
- FSL (FMRIB Software Library)
 - Oxford, UK
- http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
- AFNI (Analysis of Functional NeuroImages)
 - NIH, USA
 - http://afni.nimh.nih.gov/afni/download
- REST (Resting-State fMRI Data Analysis Toolkit)
 - Lab of Cognitive Neuroscience and Learning, Beijing Normal University, China
 - http://restfmri.net/forum/index.php

SPM (Statistical Parametric Mapping) **The Market Parametric Mapping Parametric Mapping

AFNI (Analysis of Functional NeuroImages)

Examples of groups analysis

One-Sample Case

One group of subjects (n ≥ 10)

- · One condition (house or face) effect
- Linear combination of multiple effects (house - face)

*Null hypothesis H_0 : average effect = 0

- Rejecting H₀ is of interest!
- Average effect at group level

Two-Sample Case

- Two groups of subjects (n ≥ 10):
- ex:males and females
- One condition (house or face) effect
- Linear combination of multiple effects (house - face)
- Null hypothesis H₀: Group1 = Group2
 - Results
 - Group difference in average effect
 - o Significance: t-statistic

Resting-state functional MRI data analysis

- rs-fMRI
- Resting-State Data Analysis toolkit v1.8
- (REST v1.8, Center for Cognition and Brain Disorders, Hangzhou Normal University, Zhejiang, China) (Chao-Gan and Yu-Feng 2010)
- rs-fMRI indices
 - mean fractional amplitude of low-frequency fluctuations (mfALFF)
 - mean regional homogeneity (mReHo)

mean fractional amplitude of lowfrequency fluctuations (mfALFF)

- · ALFF: Total power of slow fluctuations within a low frequency range (0.01~0.08 Hz)
- fALFF: Dividing the ALFF by the total power in the entire detectable frequency range
- mfALFF: fALFF after normalization

The example of the slow fluctuations of brain activity (Zou, Zhu et al. 2008)

mean regional homogeneity (mReHo)

- · Evaluate the similarity between the time series of a voxel and other nearest voxels
- Kendall's coefficient of concordance (KCC)
- from 0 (no agreement) to 1 (complete agreement)

$$R_i = \sum_{j=1}^m r_{i,j} \quad \bar{R} = \frac{1}{n} \sum_{i=1}^n R_i \quad S = \sum_{i=1}^n (R_i - \bar{R})^2 \quad W = \frac{12S}{m^2(n^3 - n)}$$

Origins of graph theory • In 1736, Euler showed that it was impossible to traverse the

city of Königsberg's seven bridges across the river Pregel exactly once and return to the starting point

Origins of graph theory

 To prove this conjecture, Euler represented the problem as a graph, and his original publication is generally taken to be the origin of a new branch of mathematics called graph theory

Complex brain networks

- Graph theoretical analysis of structural and functional systems
- Brain networks show increased connectivity in males (Upper) and females (Lower)

37

Complex brain networks

Regular Small-world Random

P = 0 Increasing randomness

Nature 1998; 393: 440-442.

Network topological measures

- Nodes (N)
- Edges (E)
- Node degree
- Degree distribution
- · Connection density
- Hubs
- Centrality
- Assortativity
- Modularity
- Transitivity

Whole brain network organization

- Local segregation:
 - Clustering coefficient (C)
 - Normalized clustering coefficient (Y)
 - Local efficiency (E_{local})
- Global integration:
 - Characteristic path length (L)
 - Normalized shortest path length (λ)
 - Global efficiency (E_{global})
- Small-worldness index (σ)

7

Demo	
	42