

Synchronization approach to data analysis

An Introduction

Michael Rosenblum

Institute of Physics and Astronomy, Potsdam University, Germany

URL: www.stat.physik.uni-potsdam.de/~mros

Synchronization (coupled oscillators) approach: what is it about?

• It is about multichannel time series

An example: Electro- or Magnetoencephalography (EEG/MEG)

Scalp electrodes measurements

WIKIPEDIA

Intracranial measurements

BLAUSEN.COM STAFF. "BLAUSEN GALLERY 2014". WIKIVERSITY JOURNAL OF MEDICINE.

Multichannel time series (EEG)

IMAGE:

Wikipedia

up to ~ 100 channels, high resolution (1 kH and more) long records (~30 minutes) or even continuous monitoring

$$x_k(j\Delta t),\; k=1,\ldots,N_{channel},$$
sampling interval $j=1,\ldots,N_{points}$

Multichannel time series: further examples

- Weather measurements
- Seismic activity measurements
- Measurements from various physical networks, e.g. from power grids
- Other physiological measurements, e.g. time series of cardio-respiratory interaction
- neuronal spike trains

• ...

Multichannel time series: problem formulation and analysis

Interrelation between the channels:

- linear cross-correlation or coherence in frequency domain
- phase locking value (constancy of phase shift between narrow-band-filtered components)

- . . .

• Directional relation:

- information transfer (mutual information, transfer

information, ...

- causality (Granger causality)

- . . .

Granger causality

Clive Granger, 1934-2009 Nobel Memorial Prize in Economic Sciences

Photo: Wikipedia

Granger causality

Suppose we have two time series x_1, x_2

First, we use a **univariate predictor** to quantify the predictability of x_1 , i.e. we compute the prediction error E_1

Next, we use a **bivariate predictor** to quantify the predictability of x_1 , i.e. we use **both** x_1 and x_2 and compute the prediction error E_{12}

Predictability improvement $E_{12}-E_1$ quantifies causal relation $x_2 \to x_1$

Coupled oscillators approach: what is it about?

- It is about multichannel time series
- It is about rhythmical processes

EEG data

alpha-rhythm

Band-pass filter ==> rhythmical component

EEG Frequency bands: Improved definitions [53]

Band	Frequency (Hz)	
Delta	< 4	
Theta	≥ 4 and < 8	
Alpha	≥ 8 and < 14	
Beta	≥ 14	

WIKIPEDIA

Synchronization approach: what is it about?

- It is about multichannel time series
- It is about rhythmical processes
- It is about model-based analysis

Model-based vs non-model-based techniques

- Many techniques: no assumption about the origin of the signals, e.g. correlation analysis
- Assumption: input-output systems; different interpretation of cross-correlation or cross-spectral analysis

• Assumption: signals are generated by coupled active oscillators

Model-based vs non-model-based techniques II

Disadvantage of model-based techniques:
 we rely on assumptions that sometimes cannot be verified

• Advantage of model-based techniques: relatively simple interpretation of the results

Our model: coupled active oscillators

Coupled oscillators approach: what is it about?

- It is about multichannel time series
- It is about model-based analysis
- It is about rhythmical processes
- It is about models of coupled active oscillators

Theory of coupled oscillators and of their **synchronization** is an important branch of nonlinear science

Synchronization: adjustment of rhythms of interacting active oscillators

Synchronization: an example

two coupled oscillators

Coupled oscillators: an inverse problem

We have only the measurements from the interacting objects and want to find out as much as possible about the oscillators and their couplings

Two types of experiments:

- active experiment: we have an access to the parameters of the systems/couplings and can repeat the measurements for different parameters
- passive experiment: we do not have an access to the parameters and can only observe the systems under free-running conditions

The case of active experiments is relatively simple; the case of passive experiments is very complicated!

Formulation of the problem

- Data: we have oscillatory signals measured from several units
- Assumption 1: the units are self-sustained oscillators
- Assumption 2: the interaction between the units is not too strong
- Assumption 3: signals are good for estimation of phases (later we will relax this requirement)

Formulation of the problem II

- Synchronization analysis: quantification of the strength of the interaction (degree of the phase locking)
- Connectivity analysis: recovery of the directed connectivity via reconstruction of phase dynamics from data
- Model reconstruction: estimation of some parameters of the interacting units

For all these tasks we have to estimate phases from measurements